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Abstract—The J-integral has been widely accepted as a parameter characterizing the load intensity
in nonlinear fracture mechanics. Nevertheless, a theoretical foundation of the J concept for a three-
dimensional flawed structure in large-scale yielding assuming incremental theory of plasticity is still
missing. Only numerical studies may help to close this gap. The questions to be answered are, how
a significant value of J can be defined, by which method it can be calculated, and to what extent it
will dominate the stress and strain field in the vicinity of a crack. Finite element calculations using
von Mises flow theory and large strain formulation have been accomplished on different kinds of
structures with both straight and semi-elliptical cracks. The results showed that the J-integral may
be defined locally in a largely yielded three-dimensional structure by the energy release rate due to
“virtual” crack extension and that this quantity seems to dominate the local stress and strain field
in some confined area ahead of the crack front. As this relationship appeared to be a power law of
J/r the FE results have been compared with the plane sirain HRR solutions. Though the results
agreed satisfactory well, some phenomena of the plastic response of the material could not be
explained by the HRR theory. Especially, the problem how to find appropriate values for the
parameters a and » of the Ramberg-Osgood hardening law for any real material has remained an
open question.

INTRODUCTION

Any engineer being concerned about structural integrity of components will need some
mechanical parameter which has to be a geometric invariant quantity, so that the critical
value for “failure” can be determined from a laboratory specimen and used in a wide variety
of engineering structures of different load configurations, shapes, and sizes. For high-
strength, relatively brittle materials as well as for fatigue crack growth and corrosion
cracking the linear elastic fracture mechanics and its concept of stress intensity factor have
found extensive application supposing that the plastic zone is small enough. However, many
components are made of ductile materials and will, under practical operating conditions,
become fully plastic before a crack starts to advance under monotonic loading. It is therefore
essential to consider the plastic behaviour of structures.

Nonlinear fracture mechanics based on the assumption of “J-control” is a semi-
empirical approach which is widely accepted for failure assessment in large-scale yielding[1].
The analytical background of this approach is the idea of a path independent contour
integral around the crack tip[2] which characterizes the load intensity and, hence, dominates
the singular crack-tip field. Assuming a power law hardening this dominance is described
analytically by the HRR equations[3, 4]. Nevertheless, the theoretical background of the
J-integral approach is not a very solid one because the material model behind it is a small
strain deformation theory of plasticity which, in general, does not meet the crack tip
situation in a real ductile material.

Proving the path independence of the J-integral means proving a conservation law
and, hence, postulating a nonlinearly elastic behaviour which is the essential of deformation
theory. Thus, not only local unloading, which will occur when the crack propagates, has
to be disregarded but also proportional loading must be assumed, that means a constant
ratio of principal stresses during the load history. Any rearrangement of stresses in the
process zone of the blunting crack tip will violate this basic assumption of the model.
Consequently, McMeeking[5] found that the J-integral has significant path dependence
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immediately adjacent to a blunted crack tip. Obviously. the value of the contour integral
even tends to zero as the integration path shrinks to the crack tip because the singularity
of the stress field has vanished with increasing plastic strain.

A second lack of the model is that the original J-integral as introduced by Rice as well
as the HRR equations represent a plane situation, only, whereas in a real structure there is
a stress and strain gradient along the crack front and, in addition, the crack front may be
curved. An extension of J to three dimensions can be given by introducing a plane subregion
of infinitesimal constant thickness perpendicular to the crack front in any point. The value
of the contour integral in this subregion is referred to as the “local” J-value[6]. But a
corresponding analytical solution of the three-dimensional boundary value problem at the
crack tip which might reveal the significance of the so defined local J as an intensity
parameter for the local stress and strain field is still missing and will probably never be
possible.

Thus, only numerical methods are available to study the significance of J in three
dimensions at large plastic strain and incremental plasticity. Several authors have inves-
tigated large-scale yielding of cracked bodies and the influence of finite deformations at the
crack tip to find criteria for J-dominance[7-10]. But these investigations are all restricted
to plane strain conditions and, mostly, to deformation theory. In the present study, com-
parative three-dimensional elastic plastic finite element (FE) calculations have been
accomplished using the incremental Prandtl-Reusz flow theory in an updated Lagrangian
formulation allowing for large strain.

INVESTIGATED STRUCTURES AND FE MODELS

Five different sizes of compact tension (CT) specimens have been analyzed[11] which
are, with the exception of one, standard test specimens according to ASTM E 399 with a
crack length to width ratio of a/W = 0.5 (Fig. 1). Their thickness B = W/2 varied from
12.5 mm (CT 12.5) to 200 mm (CT 200). The nonstandard specimen was only half as thick
as required to study the influence of specimen thickness and is referred to as “CT 200
(B/2)”. The FE mesh in the vicinity of the crack tip was taken the same for all sizes. The
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Fig. 1. Compact tension (CT) specimen, dimensions of the standard CT 100 (ASTM E 399).



On J-dominance of crack-tip ficlds in largely yielded 3D structures 695

a3 /20=017
alw =205

1400 1LOL

Fig. 2. Pressurized cylinder, dimensions and FE mesh of 1/8 sector of the structure.

CT specimen represents a rather simple plane configuration because all cross sections

= const are congruent, the crack front is straight, and the external forces act uniaxial and
inplane. Besides, it plays the role of a reference state of stress because, usually, critical J-
values for initiation of crack growth are obtained from it.

The second structure was a pressurized cylinder with a semi-elliptical inner surface
flaw in axial direction (Fig. 2). Its inner radius is R, = 1400 mm and its wall thickness
W = 0.1R,. It is not subjected to axial forces, and any pressure on the crack surface is
neglected as well. The depth to length ratio of the crack is a/2c = 0.17 and it penetrates to
59% of the wall thickness. Though the crack front is not straight any more the remote
stress state is still a very simple one because it is mainly tension by an approximately
constant hoop stress. However, the problem of a flawed pressure vessel is of great practical
relevance[12).

The third structure has been developed as a specimen to study the influence of multiaxial
loading[13]. It is a thick plate of dimensions 1000 x 140 mm under 8-point bending bearing
a semi-elliptical surface crack (Fig. 3). Thus, it is subjected to biaxial bending in the x- and
z-axis. The crack shape is the same as for the cylinder (Fig. 4).

8- Point - Bending

Fig. 3. Plate under 8-point bending, dimensions and load configuration of the structure.
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Fig. 4. Semi-elliptical surface crack. coordinate system and FE mesh of the crack plane.

The material was chosen to be the same for all structures. Its yield strength of o, = 440
MPa and the uniaxial yield curve have been obtained from test specimens of the German
reactor steel 20 Mn Mo Ni 5 5 which is similar to the American steel A 333 B used for the
same kind of applications. The yield curve has been approximated by a multilinear curve
(Fig. 5). Thus, no a priori approximation of the material hardening by a Ramberg-Osgood
power law has been introduced into the FE analysis. The dashed curve in Fig. 5 represents
only the reference values used for comparing the FE results with the HRR solutions, which
will be discussed later.

The computer code ADINA[14] was used for the FE calculations being extended by
some capabilities to calculate the J-integral[15]. Because of a number of numerical diffi-
culties, the calculation of J in a three-dimensional cracked body is not commonly based
on the contour integral definition but on the idea of released energy by a “virtual” crack
extension, which has originally been developed by Parks[16] and carried out for elastic
plastic material by de Lorenzi{17]. A detailed description together with numerical results
of both methods, contour integral and virtual crack extension, may be found in Ref. [6].
The background of the latter algorithm is a merely mathematical one of converting a
contour to a domain integral and must not be mistaken for a physical process, since a
*“real” extension of a crack in an elastic plastic body will result in local unloading. A physical
equivalence does only exist for an elastic material. Hence, this method which is also used
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Fig. 5. Uniaxial true stress true strain curve of steel 20 MnMoNi 5 5; Ramberg-Osgood approxi-
mation (x = 3.07, n = 5.00).
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in the present study may be understood ¢ither as a “virtual” or "fictitious™ crack extension
in a real elastic plastic material or as a real crack propagation in a fictitious nonlinear elastic
material,

RESULTS

If the J-integral is supposed to be a unifying parameter to characterize the local load
intensity at arbitrarily shaped cracks in a large variety of structures under different load
conditions it must at lcast be possible to specify its value uniquely. As mentioned before,
it will become “*path dependent” as soon as plastic flow occurs. However, since the contour
integral definition is not used here the concept of a ““path” is senseless, anyhow, and talking
of “path dependence’ may be misleading. A new definition of this idea has to be given. In
order to calculate the energy release rate by virtual crack extension some subdomain at the
crack front has to be shifted by a small amount. As any subdomain in the model is
represented by finite elements this means shifting of rings of nodes around the crack tip.
By varying the number of node rings to be shifted one will, in general, obtain aifferent
results for J which will be referred to as “path dependence”. Two typical examples are
given in Figs. 6(a) and (b) showing the results for the pressurized cylinder at two points of
the crack front which are characterized by the angle ¢ as defined in Fig. 4. Obviously, the
path dependence increases with increasing pressure, that is with extension of the plastic
zones. But if a sufficient number of node rings has been shifted the value obtained becomes
stationary. The so defined stationary or remote value will be taken for J.

The following figures show the variation of the local J along the crack front under
increasing load for the CT 100 (Fig. 7), the pressurized cylinder (Fig. 8), and the bending
plate (Fig. 9). The differences between the three different geometries and load configurations
are reflected clearly by the J-curves. In the CT specimen, J has a maximum in the mid-
plane which coincides with the maximum of stresses and crack tip opening and which does
not alter its position when load increases. The situation is only slightly different for the
semi-elliptical surface crack in the cylinder. For low pressure, when the structure is nearly
fully elastic, the J-distribution starts with three local maxima, two at the penetration points
of the crack front with the inner surface and one at the deepest point of the crack. It ends,
for high pressure, with just one maximum in the centre. The remote stress field is similar
for the cylinder and for the CT specimen and therefore the J-distributions of both structures
could be expected to be qualitatively similar. This is completely different in the bending
plate, where J has two maxima near the free surface which shift to the region of strong
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Fig. 6. (a) J-Integral vs extension of shifted subdomain showing “path dependence” for the pres-
surized cylinder at ¢ = 0 deg. (b) J-Integral vs extension of shifted subdomain showing “path
dependence™ for the pressurized cylinder at ¢ = 81 deg.
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Fig. 8. J-Integral along the crack front of the cylinder under increasing pressure p.
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Fig. 9. J-Integral along the crack front of the plate under 8-point bending for increasing load F.
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Fig. 10. Load F vs load line displacement ¥y, for various sizes of compact tension specimens.

curvature of the ellipse when load increases but remain far away from the deepest point of
the crack. The differences in the J-distribution of plate and cylinder are due to the different
nominal stress states which are bending and tension, respectively.

Next, the effect of specimen size shall be looked at. The large differences in nonlinear
behaviour of the five CT specimens are illustrated by the load vs load line displacement plot
in Fig. 10 and by the extension of the plastic zones at a given J in Fig. 11. All situations
from small to large scale yielding are represented, and J is expected to characterize the
whole bandwidth of nonlinearities. The five load vs displacement curves can easily be
approximated by one ‘“‘master curve” if the load F is normalized by the plastic limit load
F, and the load line displacement V| by the crack length (Fig. 12), remembering that a/ W
is a constant. The plastic limit loads of the standard specimens which were found from the
FE calculations coincided with less than 1% error with the formula given by Shih ez al.[10].
As the load vs displacement curves can be fitted by one master curve the same can be
done with the J-integral vs the applied load (Fig. 13) if the quantities are normalized
appropriately.

In further evaluations of stresses and strains J turned out to be a significant parameter
which dominates the crack tip fields independently of specimen size. Figure 14 gives just
one example showing the crack opening stresses a,, in the ligament of the mid-plane at
approximately J = 140 N/mm for the various specimen sizes. This is by no means obvious
because the extent of plastification is quite different, as Fig. 11 has shown, and a geometri-
cally nonlinear, incremental theory has been used for the calculations. Since J dominates
the strain field around the crack tip one should expect a unique relationship between J and

plastic zones J =140 N/mm
midplane (z=0)
F
ZALCT,S
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........ CT100
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W

Fig. 11. Compact tension specimens, plastic zone size at similar J-values for various specimen sizes.
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Fig. 14. Crack opening stresses in the ligament, normalized by yield strength S, for various CT
specimen sizes at approximately J = 140 N/mm.
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Fig. 15. Crack tip opening displacement in the midplane vs J-integral normalized by yicld strength
S for various CT specimen sizes.

the crack tip opening displacement (CTOD) as well. Figure 15 confirms the linear relation
6! = dnJ/GO* (1)

where d, is a constant depending on the material and, in a 2D model, on the geometric
condition of plane stress or plane strain[10]). Thus, if J is an appropriate parameter to
describe fracture phenomena, CTOD is one as well. However, it is much easier to calculate
0, in an FE model than to measure it on a test specimen.

After all, no significant size dependencies were found with respect to stress and strain
fields if J (or CTOD) were taken as quantities characterizing the load intensity. Hence, the
results of the CT 100 may be taken as reference values in the further discussions which will
now be concerned with the comparison of different load and geometry configurations as
represented by the CT specimen, the pressurized cylinder, and the plate under §-point
bending. Despite all obvious differences between these different structures the local J-value
turned out to be a dominating quantity for stress and strain fields again. First, the same
linear relationship of eqn (1) was found throughout the crack front between the local J and
the local 8, for the pressurized cylinder (Fig. 16) as well as for the bending plate (Fig. 17),
with the exception of points where the crack penetrates the free surface (¢ = 90°).

Since CTOD appeared to be a quantity characterizing the local load intensity, the
different stress curves of varying load and/or varying ¢, except for ¢ = 90°, will collapse
to one curve if the distance r from the crack tip is normalized by the local J,. In addition,
plots of g,, vs r/d, on a log-log scale (Figs. 18-20) reveal a region of a power law dependency
between both quantities

In(0,,/64) = In C—mIn (r/d,) 2)

Tor c@)m. (3)
Co r

This region is bounded by approximately

or

26, < r £ 506, 4)
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the crack front in the pressurized cylinder.
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Fig. 19. Crack opening stresses in the ligament of the pressurized cylinder at p = 35 MPa normalized
by yield strength S, and crack tip opening displacement (CTOD).
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The slope m in eqn (2) does not differ very much between the different structures and,
hence, may be regarded as a material constant which is independent of the geometry. In
the present study, its value is approximately m = 1/6. Though in Figs. 19 and 20 only the
stresses o, in the ligament are plotted for just one load step, the relation holds for all load
steps, and similar correlations will be found for the other stress components as well. This

encourages the idea of comparing the FE results with the HRR plane strain solutions.

Comparison with the HRR field
Introducing the linear relationship between J and CTOD, the HRR equations for the
singular stress and strain field at the crack tip take the form
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Fig. 20. Crack opening stresses in the ligament of the plate under 8-point bending at F = 12 MN
normalized by yield strength S, and crack tip opening displacement (CTOD).
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where «, 1, 6, ¢, are the constitutive coeflicients of the Ramberg—-Osgood power law. E is
Young's modulus, d, is the factor in eqn (1). /, 1s an integration constant depending on n.
and 6, ¢, are dimensionless functions of the ligament angle 6 (see Fig. 4).

The first step is to find appropriate values for the coefficients of the hardening law
which, in general is a difficult task because no real material fits a power curve over a large
range of deformation. Usually o, is taken as the yield strength and ¢, = g,/ E. Hence. x and
n are left as free parameters. Here, these parameters were not cvaluated by fitting the
material hardening curve (Fig. 5) but by approximating the FE stresses o, in the ligament
of the CT 100 (Fig. 18), a posteriori. 1t follows from eqns (3) and (5) that

m=1/(n+1)
(6)
C = (001, /E)",,(0 = 0)

and taking m = 1/6 as in Fig. 18 we get n = 5.0 and a = 3.07 if the plane strain solution is
taken as reference. The corresponding hardening curve is given by the dashed line in Fig.
5. It is now possible to compare all stress components at any angle 0 to the ligament which
have been obtained by a 3D large strain elastic—plastic FE analysis with the 2D small
strain deformation theory solution. Only a few examples can be given here showing good
agreements in some cases and disagreements in some others. The examples are restricted
to the CT specimens as some discussion might arise how the x- and --direction should be
defined for the curved crack front.

First, the variation of stresses with the distance coordinate r under a fixed angle @ is
plotted for a given load intensity of J = 140 N/mm which is beyond the plastic limit load
for the two smaller specimens (see Fig. 11). If we look at the smallest principal stress o, in
the ligament, we will find a rather good approximation beyond the locus of the stress
maximum which lies at about 53, ahead of the crack tip (Fig. 21). At the crack tip (r = 0),
of course, HRR stresses become singular whereas for a large strain solution a,, has to be
zero because of the boundary condition. This discrepancy does not arise for the shear stress
o, at 8 =90° as Fig. 22 shows. Since the FE stresses result from a 3D solution the
hydrostatic (or mean) stress g, is expected to be overestimated by the HRR equations
which assume plane strain condition (Fig. 23). However, the approximation of the von
Mises effective stress ¢ in the ligament turned out to be very bad. The HRR values lie more
than 50% lower than the FE results, but this effect will be discussed later. For ductile
fracture phenomena, the “triaxiality” is defined as the ratio of hydrostatic to effective stress.

I
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Fig. 21. Normal stresses o, in the ligament normalized by yield strength S, and crack tip opening
displacement for various CT specimen sizes at approximately J = 140 N/mm.
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Fig. 22. Shear stress at 90 deg. to the ligament normalized by K, = So/ﬁ and crack tip opening
displacement for various CT specimen sizes at approximately J = 140 N/mm.

HRR theory predicts that this quantity does neither depend on the distance coordinate r nor
on the load intensity because according to eqn (5) any quotient of two stress components is
a constant with respect to both quantities. This was found not to be true in the FE analysis.

A few examples will be given, finally, for the variation of stresses with the ligament
angle 6 at a constant distance of r = 0.23 mm. The stress components o, (Fig. 24), g,, (Fig.
25), and the hydrostatic stress o,, (Fig. 26) show the same qualitative distributions comparing
FE and HRR solutions whereas the quantitative deviations differ. All together, the agree-
ment has to be called satisfactory considering how many of the basic assumptions of HRR
theory have been violated. The best coincidence, of course, is found for o,, at 6 = 0 where
the curve fitting for the Ramberg-Osgood coefficients « and » took place. However, major
differences occur for the shear stresses o,, (Fig. 27) and consequently for the effective stress
& (Fig. 28) at 6 < 45°, Shear stresses do not even have the same sign, and at 45° HRR
theory predicts them to vanish while the FE values equal the yield stress in shear
K, = ao/\/a. This results in an underestimate of effective stress in that region which has
been stated above, already.
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Fig. 23. Mean (hydrostatic) stress in the ligament normalized by yield strength S, and crack tip
opening displacement (CTOD) for two CT specimen sizes at approximately J = 140 N/mm.
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Fig. 24. Normal stresses g,, around the crack tip in a distance of r = 0.23 mm normalized by yield
strength S, for two CT specimen sizes at approximately J = 140 N/mm.
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Fig. 25. Crack opening stresses around the crack tip in a distance of r = 0.23 mm normalized by
yield strength S, for two CT specimen sizes at approximately J = 140 N/mm.
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Fig. 26. Mean stresses around the crack tip in a distance of r = 0.23 mm normalized by yield
strength S, for two CT specimen sizes at approximately J = 140 N/mm.
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Fig. 27. Shear stresses around the crack tip in a distance of r = 0.23 mm normalized by K, =
So//3 for two CT specimen sizes at approximately J = 140 N/mm.

CONCLUSIONS

(1) Only experiments can measure a material’s resistance to fracture. But analytical
and numerical investigations are the necessary means to define characteristic quantities which
may be supposed as being independent of the structure geometry and, hence, being material
parameters.

(2) A local value of the J-integral can be defined and calculated in a 3D structure along
an arbitrarily shaped crack even for large plastic strain. Though it is not path independent
in a strict sense it takes a stationary value somewhat remote from the crack tip. This remote
value is a measure of the local load intensity and dominates the local stress and strain field
in a confined region ahead of the crack tip, independently of the geometry and load
configuration of a flawed structure.

(3) A linear relation exists between the local J and the local crack tip opening dis-
placement CTOD which depends on the material properties, mainly. Thus, if J is a charac-
teristic parameter for crack initiation, CTOD is one as well.

(4) In some region ahead of the crack tip the stresses and strains in a 3D body can be
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Fig. 28. Equivalent stresses around the crack tip in a distance of r = 0.23 mm normalized by yield
strength S, for two CT specimen sizes at approximately J = 140 N/mm.
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approximated by a power law of (J/r) or (J,/r) which is of the same kind as the plane strain
HRR solution. However, the quality of approximation differs strongly between the different
tensor components.

(5) The HRR singularity field is not able to describe the stress state directly at the
crack tip where large strains and crack tip blunting occurs. Hence, it can predict neither
the values nor the loci of the maxima of the principal stresses ahead of the crack tip. But
the plane strain HRR solutions adopted to the midplane of the CT specimen gave an upper
bound of the tensile stresses in all other cases which is an important feature if it can be
generalized.

(6) It is not yet clear how to quantify the approach to a plane strain situation in a 3D
structure. The applicability of a plane strain HRR solution to a real structure is therefore
still uncertain.
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